Loomis–Whitney inequalities in Heisenberg groups
نویسندگان
چکیده
Abstract This note concerns Loomis–Whitney inequalities in Heisenberg groups $$\mathbb {H}^n$$ Hn : $$\begin{aligned} |K| \lesssim \prod _{j=1}^{2n}|\pi _j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb {H}^n. \end{aligned}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">|K|≲∏j=12n|πj(K)|n+1n(2n+1),K⊂Hn. Here $$\pi _{j}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">πj , $$j=1,\ldots ,2n$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">j=1,…,2n are the vertical projections to hyperplanes $$\{x_j=0\}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">{xj=0} respectively, and $$|\cdot |$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">|·| refers a natural Haar measure on either or one of hyperplanes. The inequality first group {H}^1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">H1 is direct consequence known $$L^p$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Lp improving properties standard Radon transform {R}^2$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">R2 . In this note, we show how higher dimensional can be deduced by an elementary inductive argument from same approach, combined with multilinear interpolation, also yields following strong type bound: \int _{\mathbb {H}^n} _{j=1}^{2n} f_j(\pi _j(p))\;dp\lesssim \Vert f_j\Vert _{\frac{n(2n+1)}{n+1}} xmlns:mml="http://www.w3.org/1998/Math/MathML">∫Hn∏j=12nfj(πj(p))dp≲∏j=12n‖fj‖n(2n+1)n+1 for all nonnegative measurable functions $$f_1,\ldots ,f_{2n}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">f1,…,f2n {R}^{2n}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">R2n These their geometric corollaries thus ultimately based planar geometry. Among applications mention sharper version classical Sobolev u\Vert _{\frac{2n+2}{2n+1}} _{j=1}^{2n}\Vert X_ju\Vert ^{\frac{1}{2n}}, u \in BV(\mathbb {H}^n), xmlns:mml="http://www.w3.org/1998/Math/MathML">‖u‖2n+22n+1≲∏j=12n‖Xju‖12n,u∈BV(Hn), where $$X_j$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Xj horizontal vector fields Finally, establish extension coordinate _1,\ldots ,\pi _{2n}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">π1,…,π2n replaced more general families mappings that allow us apply approach $$L^{3/2}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">L3/2 - $$L^3$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">L3 boundedness operator plane.
منابع مشابه
Rotational Heisenberg Inequalities
Since their discovery in 1927, the Heisenberg Inequalities have become an icon of quantum mechanics [1]. Often inappropriately referred to as the Uncertainty Principle, these inequalities relating the standard deviations of the position and momentum observables to Planck’s constant are one of the cornerstones of the quantum formalism even if the physical interpretation of quantum mechanics rema...
متن کاملAn Introduction to Heisenberg Groups
for all x, x ∈ R. Also, Tx is the identity operator only when x = 0, and thus the correspondence x 7→ Tx provides an isomorphic embedding of R , as an abelian group, into the group of invertible linear operators on the vector space of continuous functions with compact support on R under the binary operation composition. Of course there are numerous other vector spaces of functions on R that one...
متن کاملHeisenberg groups over finite fields
ing this computation, for given k-vectorspace V with non-degenerate alternating form 〈, 〉, put a Lie algebra [2] structure h on V ⊕ k by Lie bracket [v ⊕ z, v′ ⊕ z′] = 0⊕ 〈v, v′〉 In exponential coordinates on H, the exponential map h→ H with H ≈ V ⊕ k is notated exp(v ⊕ z) = v ⊕ z with Lie group structure on H by (v ⊕ z) · (v′ ⊕ z′) = (v + v′)⊕ (z + z′ + 〈v, v ′〉 2 ) (exponential coordinates in...
متن کاملHeisenberg Groups and Algebraic Topology
We study the Madsen-Tillmann spectrum CP∞ −1 as a quotient of the Mahowald pro-object CP∞ −∞ , which is closely related to the Tate cohomology of circle actions. That theory has an associated symplectic structure, whose symmetries define the Virasoro operations on the cohomology of moduli space constructed by Kontsevich and Witten.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2022
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-022-02968-y